
CSE 451: Operating Systems

Winter 2013

Deadlock

Gary Kimura

2

3

Definition

• A thread is deadlocked when it’s waiting for an event

that can never occur

– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she

moves, and she can’t move until I move

– thread A is in critical section 1, waiting for access to critical

section 2; thread B is in critical section 2, waiting for access

to critical section 1

– I’m trying to book a vacation package to Tahiti – air

transportation, ground transportation, hotel, side-trips. It’s

all-or-nothing – one high-level transaction – with the four

databases locked in that order. You’re trying to do the same

thing in the opposite order.

4

Requirements

1. Mutual Exclusion

- Resource owned by one thread

2. Hold and Wait
- Thread may hold a resource while waiting

3. No Preemption
- Ownership is never transferred

4. Circular Wait

- Irreducible cycle in hold/wait graph

5

Resource graph

• A deadlock exists if there is an irreducible cycle in the

resource graph (such as the one above)

6

Graph reduction

• A graph can be reduced by a thread if all of that

thread’s requests can be granted

– in this case, the thread eventually will free all resources and

not be waiting on any – all arcs (allocations) to it in the graph

are deleted

• Miscellaneous theorems (Holt, Havender):

– There are no deadlocked threads iff the graph is completely

reducible

– The order of reductions is irrelevant

• (Detail: resources with multiple units)

7

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne 2002

What would cause a

deadlock?

8

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne 2002

9

Resource allocation graph with a cycle

but no deadlock

Silberschatz, Galvin and Gagne 2002

10

Approaches to Deadlock

• Break one of the four required conditions

– Mutual Exclusion?

– Hold and Wait?

– No Preemption?

– Circular Wait?

• Broadly classified as:

– Prevention (static), or

– Avoidance (dynamic), or

– detection (and recovery)

11

Prevention (static)

• Hold and Wait

• each thread obtains all resources at the beginning; blocks

until all are available

• drawback?

• Circular Wait

• resources are ordered; each thread obtains them in

sequence (which means acquiring some before they are

actually needed)

• why does this work?

• pros and cons?

12

Avoidance (dynamic)

• Circular Wait

– each thread states its maximum claim for every resource

type

– system runs the Banker’s Algorithm at each allocation

request

• Banker incredibly conservative

• if I were to allocate you that resource, and then everyone were

to request their maximum claim for every resource, could I find

a way to allocate remaining resources so that everyone

finished?

– More on this in a moment…

13

• every once in a while, check to see if there’s a

deadlock

– how?

• if so, eliminate it

– how?

Detection and recovery

14

Avoidance: Banker’s Algorithm example

• When a request is made

– pretend you granted it

– pretend all other legal requests were made

– can the graph be reduced?

• if so, allocate the requested resource

• if not, block the thread

15

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

1. I request a pot

16

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

Allocation is OK; there is a

way for me to complete,

and then you can complete

17

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

2. You request a pot

18

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

Allocation is OK; there is a

way for me to complete,

and then you can complete

19

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

3a. You request a pan

20

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

NO! Both of us might be

unable to complete!

21

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

3b. I request a pan

22

Pots

Pans

 Me You

Max:

 1 pot

 2 pans

Max:

 2 pots

 1 pan

Allocation is OK; there is a

way for me to complete,

and then you can complete

23

Current practice

• Microsoft SQL Server

– “The SQL Server Database Engine automatically detects

deadlock cycles within SQL Server. The Database Engine

chooses one of the sessions as a deadlock victim and the

current transaction is terminated with an error to break the

deadlock.”

• Oracle

– As Microsoft SQL Server, plus “Multitable deadlocks can

usually be avoided if transactions accessing the same tables

lock those tables in the same order... For example, all

application developers might follow the rule that when both a

master and detail table are updated, the master table is

locked first and then the detail table.”

24

• Windows internals (Linux no different)

– “… the NT kernel architecture is a deadlock minefield. With the

multi-threaded re-entrant kernel there is plenty of deadlock

potential.”

– “Lock ordering is great in theory, and NT was originally designed

with mutex levels, but they had to be abandoned. Inside the NT

kernel there is a lot of interaction between memory management,

the cache manager, and the file systems, and plenty of situations

where memory management (maybe under the guise of its modified

page writer) acquires its lock and then calls the cache manager.

This happens while the file system calls the cache manager to fill

the cache which in turn goes through the memory manager to fault

in its page. And the list goes on.”

– Enhancements to semaphores for file systems:

• Reacquire by owning thread

• Test for ownership before acquiring

25

Summary

• Deadlock is bad!

• We can deal with it either statically (prevention) or

dynamically (avoidance and detection)

• In practice, you’ll encounter lock ordering, periodic

deadlock detection/correction, and minefields

